506 research outputs found

    Self-Verification Improves Few-Shot Clinical Information Extraction

    Full text link
    Extracting patient information from unstructured text is a critical task in health decision-support and clinical research. Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning, in contrast to supervised learning which requires much more costly human annotations. However, despite drastic advances in modern LLMs such as GPT-4, they still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health. Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs. This is made possible by the asymmetry between verification and generation, where the latter is often much easier than the former. Experimental results show that our method consistently improves accuracy for various LLMs in standard clinical information extraction tasks. Additionally, self-verification yields interpretations in the form of a short text span corresponding to each output, which makes it very efficient for human experts to audit the results, paving the way towards trustworthy extraction of clinical information in resource-constrained scenarios. To facilitate future research in this direction, we release our code and prompts

    An Investigation into the Effects of Pre-training Data Distributions for Pathology Report Classification

    Full text link
    Pre-trained transformer models have demonstrated success across many natural language processing (NLP) tasks. In applying these models to the clinical domain, a prevailing assumption is that pre-training language models from scratch on large-scale biomedical data results in substantial improvements. We test this assumption with 4 pathology classification tasks on a corpus of 2907 prostate cancer pathology reports. We evaluate 5 transformer pre-trained models that are the same size but differ in pre-training corpora. Specifically, we analyze 3 categories of models: 1)General-domain: BERT and Turing Natural Language Representation (TNLR) models, which use general corpora for pre-training, 2)Mixed-domain: BioBERT which is obtained from BERT by including PubMed abstracts in pre-training and Clinical BioBERT which additionally includes MIMIC-III clinical notes and 3)Domain-specific: PubMedBERT which is pre-trained from scratch on PubMed abstracts. We find the mixed-domain and domain-specific models exhibit faster feature disambiguation during fine-tuning. However, the domain-specific model, PubMedBERT, can overfit to minority classes when presented with class imbalance, a common scenario in pathology report data. At the same time, the mixed-domain models are more resistant to overfitting. Our findings indicate that the use of general natural language and domain-specific corpora in pre-training serve complementary purposes for pathology report classification. The first enables resistance to overfitting when fine-tuning on an imbalanced dataset while the second allows for more accurate modelling of the fine-tuning domain. An expert evaluation is also conducted to reveal common outlier modes of each model. Our results could inform better fine-tuning practices in the clinical domain, to possibly leverage the benefits of mixed-domain models for imbalanced downstream datasets

    Predicting early psychiatric readmission with natural language processing of narrative discharge summaries

    Get PDF
    The ability to predict psychiatric readmission would facilitate the development of interventions to reduce this risk, a major driver of psychiatric health-care costs. The symptoms or characteristics of illness course necessary to develop reliable predictors are not available in coded billing data, but may be present in narrative electronic health record (EHR) discharge summaries. We identified a cohort of individuals admitted to a psychiatric inpatient unit between 1994 and 2012 with a principal diagnosis of major depressive disorder, and extracted inpatient psychiatric discharge narrative notes. Using these data, we trained a 75-topic Latent Dirichlet Allocation (LDA) model, a form of natural language processing, which identifies groups of words associated with topics discussed in a document collection. The cohort was randomly split to derive a training (70%) and testing (30%) data set, and we trained separate support vector machine models for baseline clinical features alone, baseline features plus common individual words and the above plus topics identified from the 75-topic LDA model. Of 4687 patients with inpatient discharge summaries, 470 were readmitted within 30 days. The 75-topic LDA model included topics linked to psychiatric symptoms (suicide, severe depression, anxiety, trauma, eating/weight and panic) and major depressive disorder comorbidities (infection, postpartum, brain tumor, diarrhea and pulmonary disease). By including LDA topics, prediction of readmission, as measured by area under receiver-operating characteristic curves in the testing data set, was improved from baseline (area under the curve 0.618) to baseline+1000 words (0.682) to baseline+75 topics (0.784). Inclusion of topics derived from narrative notes allows more accurate discrimination of individuals at high risk for psychiatric readmission in this cohort. Topic modeling and related approaches offer the potential to improve prediction using EHRs, if generalizability can be established in other clinical cohorts
    • …
    corecore